SOCS2 overexpression alleviates diabetic nephropathy in rats by inhibiting the TLR4/NF-κB pathway
نویسندگان
چکیده
Suppressor of cytokine signaling 2 (SOCS2) was reported to be involved in the development of Diabetic Nephropathy (DN). However, its underlying mechanism remains undefined. Western blot was carried out to determine the expressions of SOCS2, Toll-like receptors 4 (TLR4) and nuclear factor kappa B (NF-κB) pathway-related proteins in DN patients, streptozotocin (STZ)-induced DN rats and high glucose (HG)-stimulated podocytes. The effects of SOCS2 overexpression on renal injury, the inflammatory cytokines production, renal pathological changes, apoptosis and the TLR4/NF-κB pathway in DN rats or HG-stimulated podocytes were investigated. TLR4 antagonist TAK-242 and NF-κB inhibitor PDTC were used to confirm the functional mechanism of SOCS2 overexpression in HG-stimulated podocytes. SOCS2 was down-regulated, while TLR4 and NF-κB were up-regulated in renal tissues of DN patients and DN rats. Ad-SOCS2 infection alleviated STZ-induced renal injury and pathological changes and inhibited STZ-induced IL-6, IL-1β and MCP-1 generation and activation of the TLR4/NF-κB pathway in DN rats. SOCS2 overexpression attenuated apoptosis, suppressed the inflammatory cytokines expression, and inactivated the TLR4/NF-κB pathway in HG-stimulated podocytes. Suppression of the TLR4/NF-κB pathway enhanced the inhibitory effect of SOCS2 overexpression on apoptosis and inflammatory cytokines expressions in HG-stimulated podocytes. SOCS2 overexpression alleviated the development of DN by inhibiting the TLR4/NF-κB pathway, contributing to developing new therapeutic strategies against DN.
منابع مشابه
Anti-Inflammatory Effects of Atorvastatin by the Modulation of NF-κB Expression during Hyperglycemia-Induced Nephropathy in Rat
Objective: Atorvastatin has the pleiotropic effects, including anti-inflammation and antioxidant. Therefore, this study considered to examine the effects of atorvastatin on NF-қB expression, as a main transcription factor for expression of inflammatory cytokines, in hyperglycemia-induced nephropathy in rat. Materials and Methods: Twenty four male Wistar rats were randomly divided into four g...
متن کاملEmpagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis
Objective(s): Empagliflozin, a sodium-glucose cotransporter-2 (SGLT-2) inhibitor, possesses verified anti-inflammatory and anti-oxidative stress effects against diabetic nephropathy. The present investigation aims to examine empagliflozin effects on the renal levels of high mobility group box-1 (HMGB1), a potent inflammatory cytokine, and its respective receptor toll-like receptor-4 (TLR-4) in ...
متن کاملNaringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro
Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 8...
متن کاملHydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model.
Accumulating evidence has demonstrated that hydrogen sulfide (H2S) plays critical roles in the pathogenesis of chronic kidney diseases. This study was designed to investigate whether H2S has protective effects against diabetic nephropathy. Diabetic rats were induced by intraperitoneal injection of streptozotocin and administrated with H2S donor NaHS for 12 weeks. Rat glomerular mesangial cells ...
متن کاملEndogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt
Nicotinamide phosphoribosyltransferase (Nampt) is a key enzyme in the nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway. Exogenous extra cellular Nampt has been reported to increase the synthesis of pro-fibrotic molecules in various types of renal cells. However, the role of endogenous Namptenzymatic activity in diabetic renal cells, particularly those associated with inflammation a...
متن کامل